MTRR (gene)

MTRR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases MTRR, MSR, cblE, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase
External IDs MGI: 1891037 HomoloGene: 11419 GeneCards: MTRR
RNA expression pattern


More reference expression data
Orthologs
Species Human Mouse
Entrez

4552

210009

Ensembl

ENSG00000124275

ENSMUSG00000034617

UniProt

Q9UBK8

Q8C1A3

RefSeq (mRNA)

NM_002454
NM_024010

NM_172480
NM_001308475

RefSeq (protein)

NP_002445.2
NP_076915.2

NP_001295404.1
NP_766068.1

Location (UCSC) Chr 5: 7.85 – 7.91 Mb Chr 13: 68.56 – 68.58 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

Methionine synthase reductase also known as MSR is an enzyme that in humans is encoded by the MTRR gene.[3][4]

Function

Methionine is an essential amino acid required for protein synthesis and one-carbon metabolism. Its synthesis is catalyzed by the enzyme methionine synthase. Methionine synthase eventually becomes inactive due to the oxidation of its cob(I)alamin cofactor. Methionine synthase reductase regenerates a functional methionine synthase via reductive methylation. It is a member of the ferredoxin-NADP(+) reductase (FNR) family of electron transferases.[4]

Clinical significance

Patients of the cblE complementation group of disorders of folate/cobalamin metabolism which results in homocystinuria are defective in reductive activation of methionine synthase.[4]

See also

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA (Mar 1998). "Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria". Proceedings of the National Academy of Sciences of the United States of America. 95 (6): 3059–64. doi:10.1073/pnas.95.6.3059. PMC 19694Freely accessible. PMID 9501215.
  4. 1 2 3 "Entrez Gene: MTRR 5-methyltetrahydrofolate-homocysteine methyltransferase reductase".

Further reading

  • Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R (Aug 1999). "A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida". Molecular Genetics and Metabolism. 67 (4): 317–23. doi:10.1006/mgme.1999.2879. PMID 10444342. 
  • Wilson A, Leclerc D, Rosenblatt DS, Gravel RA (Oct 1999). "Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism". Human Molecular Genetics. 8 (11): 2009–16. doi:10.1093/hmg/8.11.2009. PMID 10484769. 
  • James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (Oct 1999). "Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome". The American Journal of Clinical Nutrition. 70 (4): 495–501. PMID 10500018. 
  • Leclerc D, Odièvre M, Wu Q, Wilson A, Huizenga JJ, Rozen R, Scherer SW, Gravel RA (Nov 1999). "Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene". Gene. 240 (1): 75–88. doi:10.1016/S0378-1119(99)00431-X. PMID 10564814. 
  • Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE (Nov 2002). "Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida". American Journal of Human Genetics. 71 (5): 1222–6. doi:10.1086/344209. PMC 385102Freely accessible. PMID 12375236. 
  • Olteanu H, Munson T, Banerjee R (Nov 2002). "Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase". Biochemistry. 41 (45): 13378–85. doi:10.1021/bi020536s. PMID 12416982. 
  • Zavadakova P, Fowler B, Zeman J, Suormala T, Pristoupilová K, Kozich V, Zavad'áková P (Oct 2002). "CblE type of homocystinuria due to methionine synthase reductase deficiency: clinical and molecular studies and prenatal diagnosis in two families". Journal of Inherited Metabolic Disease. 25 (6): 461–76. doi:10.1023/A:1021299117308. PMID 12555939. 
  • Pietrzyk JJ, Bik-Multanowski M, Sanak M, Twardowska M (2003). "Polymorphisms of the 5,10-methylenetetrahydrofolate and the methionine synthase reductase genes as independent risk factors for spina bifida". Journal of Applied Genetics. 44 (1): 111–3. PMID 12590188. 
  • Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH (Mar 2003). "Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects". Molecular Genetics and Metabolism. 78 (3): 216–21. doi:10.1016/S1096-7192(03)00008-8. PMID 12649067. 
  • Brilakis ES, Berger PB, Ballman KV, Rozen R (Jun 2003). "Methylenetetrahydrofolate reductase (MTHFR) 677C>T and methionine synthase reductase (MTRR) 66A>G polymorphisms: association with serum homocysteine and angiographic coronary artery disease in the era of flour products fortified with folic acid". Atherosclerosis. 168 (2): 315–22. doi:10.1016/S0021-9150(03)00098-4. PMID 12801615. 
  • Sliwerska E, Szpecht-Potocka A (2003). "[Mutations of MTHFR, MTR, MTRR genes as high risk factors for neural tube defects]". Medycyna Wieku Rozwojowego. 6 (4): 371–82. PMID 12810988. 
  • Beyer K, Lao JI, Latorre P, Riutort N, Matute B, Fernández-Figueras MT, Mate JL, Ariza A (Jul 2003). "Methionine synthase polymorphism is a risk factor for Alzheimer disease". NeuroReport. 14 (10): 1391–4. doi:10.1097/01.wnr.0000073683.00308.0e. PMID 12876480. 
  • Bosco P, Guéant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano C, Guéant JL (Sep 2003). "Methionine synthase (MTR) 2756 (A --> G) polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome". American Journal of Medical Genetics Part A. 121A (3): 219–24. doi:10.1002/ajmg.a.20234. PMID 12923861. 
  • Olteanu H, Wolthers KR, Munro AW, Scrutton NS, Banerjee R (Feb 2004). "Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase". Biochemistry. 43 (7): 1988–97. doi:10.1021/bi035910i. PMID 14967039. 
  • Gemmati D, Ongaro A, Scapoli GL, Della Porta M, Tognazzo S, Serino ML, Di Bona E, Rodeghiero F, Gilli G, Reverberi R, Caruso A, Pasello M, Pellati A, De Mattei M (May 2004). "Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin's lymphoma in adults". Cancer Epidemiology, Biomarkers & Prevention. 13 (5): 787–94. PMID 15159311. 
  • Leal NA, Olteanu H, Banerjee R, Bobik TA (Nov 2004). "Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase". The Journal of Biological Chemistry. 279 (46): 47536–42. doi:10.1074/jbc.M405449200. PMID 15347655. 
  • Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR, Quinlivan EP, Gregory JF, Theriaque DW, Kauwell GP (Nov 2004). "Methionine synthase reductase 66A->G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C->T variant". The Journal of Nutrition. 134 (11): 2985–90. PMID 15514263. 


This article is issued from Wikipedia - version of the 7/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.