NgAgo

NgAgo is a single-stranded DNA (ssDNA)-guided Argonaute endonuclease, an acronym for Natronobacterium gregoryi Argonaute. NgAgo binds 5′ phosphorylated ssDNA of ~24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at the gDNA site. Like the CRISPR/Cas system, NgAgo was reported to be suitable for genome editing,[1] but this has not been replicated. In contrast to Cas9, the NgAgo–gDNA system does not require a protospacer adjacent motif (PAM).

Role

NgAgo was proposed in May 2016 to be useful for genome editing because of the system’s high accuracy and efficiency, which was said to minimize off-target effects. The specificity of the gDNA is essential, as cleavage efficiency is impaired by a single nucleotide mismatch between the guide and target molecules. Using 5’ phosphorylated ssDNAs as guide molecules reduces the possibility of cellular oligonucleotides misleading NgAgo. A guide molecule can only be attached to NgAgo during the expression of the protein. Once the guide is loaded, NgAgo cannot swap free floating ssDNA for its gDNA. Designing, synthesizing, and adjusting the concentration of ssDNAs is easier compared to systems using sgRNA. The required dosage of ssDNA is less than that of a sgRNA expression plasmid.[1]

Controversy

Doubts about the technique were raised on gene editing forums as early as June and have persisted.[2] There have been several allegations that this procedure is impossible to reproduce. Nature Biotechnology, which originally published the research, is investigating. [3][4] In November 2016, a letter was published in Protein & Cell questioning the research and the lead author's claim that replication requires "superb experimental skill".[5] The same month, Nature Biotechnology published a critical correspondence article by three groups[6] and an accompanying expression of concern by the editors on the original article.[7]

References

  1. 1 2 Gao, Feng; Shen, Xiao Z; Jiang, Feng; Wu, Yongqiang; Han, Chunyu (2016). "DNA-guided genome editing using the Natronobacterium gregoryi Argonaute". Nature Biotechnology. 34: 768-773.
  2. Blow, Nathan (October 4, 2016). "To Edit or Not:The NgAgo Story". BioTechniques. Retrieved November 29, 2016.
  3. Cyranoski, David. "Replications, ridicule and a recluse: the controversy over NgAgo gene-editing intensifies". nature.com. Retrieved August 17, 2016.
  4. Cyranoski, David. "NgAgo gene-editing controversy escalates in peer-reviewed papers". nature.com. doi:10.1038/nature.2016.21023. Retrieved November 25, 2016.
  5. Burgess, Shawn; Cheng, Linzhao; Gu, Feng; Huang, Junjiu; Huang, Zhiwei; Lin, Shuo; Li, Jinsong; Li, Wei; Qin, Wei; Sun, Yujie; Songyang, Zhou; Wei, Wensheng; Wu, Qiang; Wang, Haoyi; Wang, Xiaoqun; Xiong, Jing-Wei; Xi, Jianzhong; Yang, Hui; Zhou, Bin; Zhang, Bo (November 15, 2016). "Questions about NgAgo". doi:10.1007/s13238-016-0343-9. Retrieved November 29, 2016.
  6. Lee, Seung Hwan; Turchiano, Giandomenico; Ata, Hirotaka; Nowsheen, Somaira; Romito, Marianna; Lou, Zhenkun; Ryu, Seuk-Min; Ekker, Stephen C; Cathomen, Toni; Kim, Jin-Soo (November 28, 2016). "Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute". doi:10.1038/nbt.3753. Retrieved November 29, 2016.
  7. "Corrected online 28 November 2016". Nature Biotechnology. November 28, 2016. Retrieved November 29, 2016.


This article is issued from Wikipedia - version of the 11/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.