Langlands–Deligne local constant

In mathematics, the Langlands–Deligne local constant (or local Artin root number up to an elementary function of s) is an elementary function associated with a representation of the Weil group of a local field. The functional equation

L(ρ,s) = ε(ρ,s)L(ρ,1−s)

of an Artin L-function has an elementary function ε(ρ,s) appearing in it, equal to a constant called the Artin root number times an elementary real function of s, and Langlands discovered that ε(ρ,s) can be written in a canonical way as a product

ε(ρ,s) = Π ε(ρv, s, ψv)

of local constants ε(ρv, s, ψv) associated to primes v.

Tate proved the existence of the local constants in the case that ρ is 1-dimensional in Tate's thesis. Dwork (1956) proved the existence of the local constant ε(ρv, s, ψv) up to sign. The original proof of the existence of the local constants by Langlands (1970) used local methods and was rather long and complicated, and never published. Deligne (1973) later discovered a simpler proof using global methods.

Properties

The local constants ε(ρ, s, ψE) depend on a representation ρ of the Weil group and a choice of character ψE of the additive group of E. They satisfy the following conditions:

Brauer's theorem on induced characters implies that these three properties characterize the local constants.

Deligne (1976) showed that the local constants are trivial for real (orthogonal) representations of the Weil group.

Notational conventions

There are several different conventions for denoting the local constants.

References

External links

This article is issued from Wikipedia - version of the 10/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.